2. 流量:决定成败 UV & PV(页面浏览人数、页面访问次数) UV 描述了访问的人数,是一个很重要的数据指标,它的多少往往决定了最终 GMV 的高低。UV 源自各种途径,例如站外广告、站内的资源位分配、用户主动回访流量、社交裂变活动的分享引流等。 PV 描述了访问的次数,例如用户一天访问了这个页面3次,这时候会计算为 3 PV 和 1 UV。也就是说,PV 比 UV 多了某段时间内用户多次访问的信息。若要看页面的流量量级,无论看 UV 还是 PV 都是可以的。 人均浏览次数(人均浏览次数 = 页面访问次数 / 页面浏览人数) 这个指标描述了某段时间内,每个用户平均浏览页面的次数。不同的场景会有不同的值,需要根据具体的场景来判断高低。有些情况会出现 PV 高出 UV 很多的场景,如存在需要用户多次回访的玩法、有分时段运营的策略(e.g. 一天三次红包雨)等等,需要具体场景具体分析。 3. 行为:寻根溯源点击率(点击率 = 模块点击人数 / 页面浏览人数) 用户对此模块的点击人数,在所有进入页面的流量中的百分比。可以看作用户对于模块的需求强烈程度的评判指标之一。与页面流量和页面 GMV 的关系类似,模块的点击率与模块的产出是强相关的(如下图,横轴是各模块)。 △ 各模块的点击率 & 订单金额占比对比,图表来自数懒分析平台 点击率的影响因素有: - 模块在页面中的位置:若放得越高,则越可能被更多的用户看见,那么点击率高的可能性,就比放置位置低的模块要来得更高。毕竟页面越往下,看到的用户就更少了。
- 模块本身的吸引程度:比如模块本身是个优惠券集合楼层,就比没有利益点的普通模块更吸引人、更容易获得更多点击。此外,模块的样式设计、主题表述的清晰与否、主题对用户的吸引力和潜在用户群大小,这些都会影响到模块的吸引力。
曝光点击率(曝光点击率 = 模块点击人数 / 模块曝光人数) 用户对此模块的点击人数,在所有看到此模块的流量中的百分比。与点击率的公式对比可发现,点击率的分母是所有进入页面的流量,但用户的浏览行为永远是浏览得越深,流量越少的。这也就导致位置越深的模块算点击率就越吃亏,因为相当一部分流量压根就没有看到这个模块,也被算进分母里了。而曝光点击率,就是一个排除了页面位置对模块的影响后,可以用来相对公平地去比较各模块的吸引力的数据指标。 思考:什么场景用点击率,什么场景用曝光点击率呢? - 当想要单纯评估楼层对用户的吸引力时,可以看曝光点击率;
- 当想要综合评估楼层的整体效果与贡献时,看点击率,毕竟它与楼层 GMV 相关性更高;
- 曝光需要特殊埋点,且可能会影响页面性能,因此很多时候我们没有办法获取到曝光数据,也只能看点击率了。
曝光点击率的使用注意: 首屏内的楼层的曝光点击率,数据可能不准确。首屏的曝光 UV 是最大的,里面包含了各种异常情况,例如一进页面就跳出,也算作曝光。因此导致首屏的曝光点击率往往会偏小(如下图所示),无法与其他楼层比较。若想比较首屏情况,建议与点击率一起综合来看。 △ 各屏的曝光点击率差异,图表来自大促某页面的数据分析 曝光率(曝光率 = 模块曝光人数 / 页面浏览人数) 这个数据可以看出用户在页面上的浏览深度如何,有百分之多少的用户看到了哪一屏。从这个数据中,我们可以发现一些关键的节点。例如,若我们的业务主推是在第二~三屏的位置,但最终发现曝光率在第二屏便暴跌,这便是存在问题的,说不定我们需要把主推内容再往上提一些,或者需要去排查首屏是否有会令用户立即跳转和跳出的内容……这便是曝光率这个数据指标,可以带来的分析价值。 停留时长 这个数据指标很好理解,是描述用户在页面上平均停留多少秒。 思考:曝光率下跌曲线越慢 / 浏览深度越深 / 停留时长越长,就代表我们的页面做得越好吗? 曝光率和停留时长的影响因素比较一致,因此可以合在一起解释。曝光率的下降曲线、停留时长的长与短,影响因素有这些: 人的生理极限:人不是机器,根据研究,「人不受干扰地执行单一操作的时长为 6s ~ 30s 」[注1],超过这一常数,用户就会走神。可想而知,用户在单一页面上停留的时间是有上限的,不因页面放置入的内容多少而变化。一个反例,是通过利益点来吸引用户在页面上浏览得更深,这不但与生理极限相悖,也把用户自然的浏览行为和目标,硬生生变成了为了追寻更多利益点而进行类似完成任务的操作。除了用利益点交换一个好看的数据以外,这样的做法似乎没能带来更多的产出。 页面定位及内容:在双 11 主会场中,用户的行为模式趋近找优惠和找目标品类,那么他可能不会在这里浏览太多屏数、也不会停留太久——这个时候影响曝光率和停留时长的,就是他有多快能找到感兴趣的优惠,因此,并不能说浏览深度越深、停留时长越长就越好;在 BI(千人千面)商品瀑布流中,用户的行为是闲逛和挑选,这时候他更可能浏览更多的屏数、停留更长时间——因此浏览的商品越多,可以说是对最终效益最好的。 异常情况:例如加载异常、页面崩溃的场景,就会导致停留时长异常低、二屏后曝光异常低。 综上,我们应该根据具体的场景、通过数次历史数据的对比,去设定和校正目标曝光率、目标停留时长。平日看这两个数据,可以当作一个监测异常的数据,在正常范围内的波动不需要过度解读,一旦发现特别异常的情况,再进行具体的分析。
|